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Abstract—In this paper, we propose a novel fusion framework 

based on a dense network with channel and spatial attention 

(CSpA-DN) for PET and MR images. In our approach, an 

encoder composed of the densely connected neural network is 

constructed to extract features from source images, and a 

decoder network is leveraged to yield the fused image from these 

features. Simultaneously, a self-attention mechanism is 

introduced in the encoder and decoder to further integrate local 

features along with their global dependencies adaptively. The 

extracted feature of each spatial position is synthesized by a 

weighted summation of those features at the same row and 

column with this position via a spatial attention module. 

Meanwhile, the interdependent relationship of all feature maps is 

integrated by a channel attention module. The summation of the 

outputs of these two attention modules is fed into the decoder and 

the fused image is generated. Experimental results illustrate the 

superiorities of our proposed CSpA-DN model compared with 

state-of-the-art methods in PET and MR images fusion according 

to both visual perception and objective assessment. 

Keywords—channel attention; dense network; image fusion; 

spatial attention; PET and MRI 

I.  INTRODUCTION 

As is well known, medical imaging plays an increasingly 
significant role in many clinical applications including disease 
diagnosis, treatment planning and surgical navigation [1]. With 
the rapid development of sensor mechanisms and medical 
imaging technologies, there are many kinds of medical image 
modalities in clinical applications, such as Computed 
Tomography (CT), Magnetic Resonance imaging (MRI), and 
Positron Emission Tomography (PET), etc. Generally, different 
modalities of medical images need to be observed and analyzed 
separately by physicians to acquire comprehensive information 
for diagnosing the illness, but this separating mode of 
assessment is time-consuming and may result in inconvenience 
in many clinical applications [2]. In consequence, the goal of 
medical image fusion is to integrate the complementary 
information contained in multi-modal images [3, 4]. 
Specifically, fusion of PET and MRI images can not only 

obtain abundant anatomical structures from MRI images and 
but also retain rich functional information form PET images. 

In recent years, a plenty of medical image fusion methods 
have been proposed. Due to the difference in imaging 
mechanism of multi-modal medical images, the pixel 
intensities of raw images at the same location generally vary 
significantly. As a result, many algorithms based on multi-scale 
decomposition (MSD) are introduced to pursue perceptually 
good fusion results. These frequently-used MSD fusion 
technologies include Laplacian pyramid (LP) [5], discrete 
wavelet transform [6] and dual-tree complex wavelet transform 
[7], multi-resolution singular value decomposition (MSVD) [8], 
non-subsampled contourlet transform (NSCT) [9] and non-
subsampled shearlet transform (NSST) [10]. Nevertheless, 
many researches in the literature demonstrate that the 
performances of these MST approaches mainly depend on 
designing an effective fusion strategy.  

In recent years, ever since the success of AlexNet in the 
ImageNet challenge of 2012 [11], deep learning techniques 
have been applied in many fields of computer vision, and the 
more recent success in image fusion tasks. Liu et al. [12] 
trained a deep convolutional neural network (CNN) by the 
image patches to learn a direct mapping from source raw 
images to the fused image. Subsequently, Liu et al. [13] also 
proposed a medical image fusion method using a Siamese 
convolutional network to create a weight map, which can 
synthesize the pixel activity information of the source images. 
Prabhakar et al. [14] introduced a deep unsupervised CNN 
framework to learn the fusion operation. Zhang et al. [15] 
introduced a general image fusion approach based on the CNN 
model called IFCNN. They extract the features from the source 
images using two convolutional layers and merge these 
convolutional features by a suitable fusion strategy. Finally, the 
fusion image was reconstructed by these merged features. 
Likewise, Liu et al. [16] also proposed a two-stream fusion 
network (TFNet) to fuse panchromatic image and multi-
spectral image.  

Recent researches have reported that the backpropagated 
gradient information of the neural network can vanish and 
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“washout” as the CNN layers become increasingly deep. Many 
publications [17-20] create skip connections between previous 
layers and later layers to address this problem. In contrast to 
ResNets, Huang et al. [21] concatenated the features instead of 
summation before passed into the next layer. In their approach, 
the additional inputs from all previous layers are fed into the 
subsequent layers, which can preserve the feed-forward nature 
and ensure maximum information flow between layers. 
Therefore, each layer consists of all features of the previous 
layers in a simple densely connected way, referred as a Dense 
Convolutional Network (DenseNet), which has the strong 
ability of feature representation with fewer parameters than 
traditional CNNs. Li and Wu [22] proposed a new deep 
learning model based on the DenseNet architecture for infrared 
and visible image fusion named as DenseFuse. Xu et al. [23] 
introduced a weight block to get the weights of two source 
images by calculating image quality assessment and entropy 
metrics. Combining the weights, they presented a new image 
fusion framework for multiple tasks applying the dense 
connected network called FusionDN. 

Nevertheless, the significant information of different 
modalities of source images can vary significantly. For 
instance, as representations of various medical images, PET 
images represent the functional information with high-contrast 
pixel intensities, whereas MRI images primarily show the 
abundant structural and texture information of human organs 
and tissues with gradient variations. Furthermore, the primary 
obstacle of image fusion based on deep learning is the 
insufficiency of ground-truth fused images. To deal with this 
issue, the ground-truth fusion images are synthetically created 
in some publications. However, the obtained ground-truth 
fused images in this manner are not appropriate for all fusion 
problems and the process is time-consuming. To deal with the 
above-mentioned challenges, we propose a novel fusion model 
based on dense network that does not require the ground-truth 
fusion images. 

It is reported by recent researches [24, 25] that the channel 
and spatial attention mechanisms have been successfully 
applied in the scene segmentation and curvilinear structure 
segmentation. In clinical applications, tree-like structures are 
frequently encountered in biomedical contexts in clinical 
applications, such as the bronchial system, the vascular 
topology, and the breast ductal network, etc. In addition, each 
feature channel can be considered as the specific structure 
response. Motivated by [24], we introduce a self-attention 
network consisting of two parallel attention modules, i.e., 
channel attention and spatial attention, into our fusion model 
and further enhance the capability of feature representation. 
The spatial attention mechanism can integrate the global 
structural information into local features. The channel attention 
strategy can sufficiently leverage the interdependencies 
between different channels. To improve the computational 
efficiency, we employ a Criss-Cross attention block that was 
introduced by [26] to obtain the spatial attention. 

Combining dense network and self-attention mechanism, 
we propose a novel Channel and Spatial Attention Dense 
Network (CSpA-DN) for PET and MRI images. Our approach 
consists of three components: an encoder based on the densely 
connected network, a self-attention network and a decoder. 

Given two source images, the encoder network is leveraged to 
extract the image features. Then, these features are fed into the 
self-attention network to adaptively combine local features as 
well as their global dependencies. Finally, the better feature 
representations are obtained from the self-attention network 
and fed into the decoder to generate the final fused image. 
Hence, our PET and MRI fusion task does not require the 
ground-truth fusion images. Both visual assessment and 
quantitative evaluation results demonstrate the superior 
performance of CSpA-DN compared with state-of the-art 
approaches. 

To sum up, the primary contributions of our work consist of 
the following aspects: 

• Taking into account the shortage of ground-truth fusion 
images as the stumbling block, we propose a novel deep 
learning network for image fusion. 

• The image fusion problem is formulated as an encoder-
decoder framework; thus, the proposed fusion model 
can be trained in an end-to-end learning mode and 
automatically generate the fused image without 
designing any activity level measurement or fusion rule. 

• We propose a novel densely connected network with 
self-attention mechanism to improve the discriminant 
ability of spatial feature representations for image 
fusion. 

• Experimental results on PET and MRI images 
demonstrate state-of-the-art performance. 

The rest of this paper is organized as follows. In Section 2, 
we introduce the new proposed fusion architecture based on a 
densely connected network with a self-attention mechanism. 
Section 3 provides the training datasets and our experimental 
results on PET and MRI images with a comparison to the state-
of-the-art approaches. Concluding remarks and perspectives 
are addressed in Section 4. 

II. PROPOSED CSPA-DN FUSION MODEL 

In this section, we will describe in details the network 
architecture of our proposed CSpA-DN fusion model, a typical 
encoder-decoder structure as shown in Fig. 1, which consists of 
an encoder network, an attention network and a decoder. 

 

Fig. 1. Schematic architecture of our proposed CSpA-DN fusion network. 
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Fig. 2. Architecture of the Encoder based on the densely connected network. These color lines represent the skip connections between layers. The output is the 

encoded feature maps El(I). 

A. Encoder Network 

Firstly, we utilize an encoder network to extract the features 
of source images. Feature extraction is a significant procedure 
in deep learning-based image fusion approaches. To adequately 
employ the features of middle layers, we apply the dense 
connections with skip paths between layers close to the input 
and those close to the output. As is shown in Fig. 2, our 
encoder consists of two parts: the common block 1 and the 
dense block containing four modules. The common block 1 
contains a convolutional layer with the kernel size of 3×3 and a 
Relu activation function. Each of these modules include two 
convolution layers with 3×3 filters and stride 1, and each of 
convolutional layer is followed by batch normalization and 
Relu activation function. The skip connections (those color 
curves in Fig. 2) are built between each module and all other 
modules in a feed-forward manner, which can enhance the 
feature representations and improve the computational 
efficiency. Different from the DenseNet [21], our network does 
not include the pooling layers that introduce down-sampling 
operation and drop out some detail information in the process 
of image fusion. It means that the input size of each layer is the 
same as the output size and can preserve the image features as 
much as possible when passing through the whole network. 
The input of our encoder is the concatenation of two single-
channel source images I1 and I2. And in our network, the 
reflection mode is adopted to pad the input images. In this way, 
the input source images can be any size. 

B. Self-Attention Network 

The upper and lower parts in Fig. 3 represent the spatial and 
channel attention modules, respectively. 

1) Spatial attention module 
The channel number of input features of the attention 

network is C and the size of feature map is HW. Firstly, 
these feature maps F0 obtained from the encoder network are 
fed into the spatial attention module. Then, we adopt two 

convolutional layers with filter size of 11, to create two new 

feature maps F1∈C'HW, F2∈C'HW. Note that the number 

of output features C' is less than input feature channel number 
C to reduce dimension. For each spatial position in F1, we can 

yield a vector F1(u)∈C'. At the same time, we can also 

collect a feature vector set F2(u)∈(H+W-1)C' from F2, which is 

located in the same row or column with position u. This 
operation is termed as collection. After that a multiplication 
(affinity operation) between F1 and the transpose of F2 is 
performed to merge these features. Subsequently, the spatial 
relationship can be described by a spatial attention matrix with 

the size of (H+W-1)HW utilizing a softmax function: 

( ) ( )( )
( ) ( )( )

1 2

,u 1

1 21

exp u ,u

exp u ,u

T

i C H W T

i u

F F i
S

F F i
 + −

=


=

 
,             (1) 

where Si,u represents the impact of the spatial position u in the 
ith channel; the symbol ‘T’ denotes the transpose operation; 
the larger Si,u, the greater spatial attention at position u. 

At the same time, we employ another convolution layer 

with the kernel size of 11 to generate the feature map F3∈

CHW. Likewise, we can also obtain the collection set of F3, 

 

Fig. 3. The architecture of spatial attention module and channel attention 

module. 
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denoted by F3(u) ∈ (H+W-1)C. And then a matrix 

multiplication between F3(u) and the spatial attention matrix 
Si,u is performed and the result F4 is summed with the input 
features F0. Finally, the output F5 of spatial attention module 
is obtained by performing an element-wise summation 
operation between F4 and the original features F0 as follows: 

( ) ( ) ( )5 4 0 3 ,u 01
u ,u u

C

ii
F F F F i S F 

=
= + = + ,        (2) 

were α is a scale parameter that balancing the tradeoff between 
F4 and F0. The feature at each position in F5 is the weighted 
summation between the features of all positions at the same 
row and column with this position and original features. 
Hence, the global structural information is merged into local 
features according to the spatial attention module. 

2) Channel attention module 
Different from the spatial attention mechanism, channel 

attention strategy mainly focuses on the interdependencies 
between different channels of feature maps to improve the 
ability of feature representation. The original feature F0 is fed 

into three 11 convolutional layers and obtain three channel 

attention maps C1, C2 and C3 ∈CHW. Firstly, we reshape 

these channel maps C1, C2 and C3 to CHW. Then, the 
channel attention matrix can be calculated through performing 
a matrix multiplication between C1 and the transpose of C2, 
and expressed as the following softmax function: 

( ) ( )( )
( ) ( )( )

1 2

1 21

exp

exp

T

yx C T

x

C x C y
C

C x C y
=


=


,                      (3) 

where Cyx measures the impact of channel x on channel y. In 
addition, the channel attention matrix Cyx is multiplied with C3 
and the result C4 is reshaped to the same size of input features 

CHW. Ultimately, C4 is summed with the input original 
feature maps F0 via a weighted parameter to get the output of 
channel attention module: 

5 4 01

C

x
C C F

=
= +                              (4) 

This formula demonstrates that the final feature of each 
channel is a weighted sum of the features of all channels and 
original feature maps. These operations can model the 
dependencies between the channels of feature maps. To sum 
up, the self-attention mechanism including spatial attention 
and channel attention can help to facilitate the discriminability 
of deep features. 

 

Fig. 4. The detailed structure of the decoder network. The input is feature 

maps obtained by channel and spatial attention network with the same size as 

El(I). 

C. Decoder Network 

The last component of our proposed fusion model is 
reconstructing the final fused image from these enhanced 
features obtained by the self-attention network. The decoder 
network consists of five blocks. Each of the former four 
blocks includes one convolution layer and one Relu layer, and 
the last block is composed of one convolutional layer and 
Tanh as an activation function. In the decoder network, all 

filter size and strides are set as 33 and 1, along with the 
reflection padding mode used before convolution operation to 
avoid the information loss. The input of the decoder network 
is the feature maps with the channel number C and size of 

HW and the output result is the final constructed fusion 
image. In the whole network, the sizes of feature maps are 
constant, which means that it can avoid information lost and 
invasion for image fusion during down-sampling and up-
sampling processes. 

D. Loss function 

In this section, we will discuss the loss function used in 
our proposed fusion model. The objective of image fusion is to 
reconstruct the high-quality fusion image containing more 
information from two source images. In deep learning, mean 
square error (MSE) is frequently-used loss function to 
constrain the prediction of model close to the ground-truth 
output. This loss function constrains the intensity information 
between the fusion image and two source images. In order to 
reconstruct the fusion image more precisely, we introduce the 
structural similarity into the total loss. Therefore, we minimize 
the following loss function L to train our fusion model. 

( )= 1mse ssim mseL L L L SSIM = + + −              (5) 

In formula (5), SSIM denotes the structural similarity 
index measure and it measures the structural similarity of two 
images. The total loss function is a weighted combination of 
the MSE loss Lmse and the SSIM loss Lssim with the weight 

parameter .  

III. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed image fusion 
model, the fusion experiments were conducted on one publicly 
available dataset including PET and MRI images. In Section A, 
the dataset and the setting of parameters are described. Then, 
we demonstrate the qualitative analyses of our fusion model in 
Section B. The quantitative performance of our model in terms 
of these assessment metrics is exemplified in Section C and 
compared with those of state-of-the-art methods. Our 
proposed image fusion model is implemented in the Pytorch 
framework [27]. It is worth noting that all deep learning-based 
methods run on the same NVIDIA GPU TESLA T4, while 
other fusion methods run on the same CPU i7-8565. 

A. Dataset and Parameter Setting 

The dataset used for medical image fusion in this work is 
obtained from the database of Whole Brain Atlas [28]. Among 
these data, 58 pairs of PET and MRI images are selected as the 
training data and 20 pairs are employed as test images to 
evaluate the performance of our fusion model. All these pairs  
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Fig. 5. Qualitative results of PET and MRI image fusion. From top to bottom: PET images, MRI images, and fusion images of GTF, MSVD, IFCNN, TFNet and 

our proposed CSpA-DN. 
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of images have been pre-registered with the same spatial size 

of 256256. In the training process, the source images are 

cropped to patches of size 6464. The batch size is set as 64 
and the number of epochs is 600.  

To evaluate the quality of the fused image and assess the 
performance of different fusion methods, four objective 
evaluation metrics are considered to evaluate quantitatively 
our fusion model and other methods in this work, i.e., entropy 
measure (EN) [29], Xydeas and Petrovic metric (Qabf) [30], 
feature mutual information using image pixels (FMI_pixel) 
[31], FMI with discrete cosine transformation (FMI_dct).  

EN is devoted to assessing the characteristics of fused 
images, and measure the amount of information contained in 
the fusion results. On the other hand, the other three metrics, 
Qabf, FMI_pixel and FMI_dct are exploited to evaluate the 
correlations between the fusion images and two source images. 
Specifically, Qabf metric is mainly leveraged to evaluate the 
edge information that is transformed from the source images 
to fused images. FMI_pixel and FMI_dct focus on measuring 
structural and textural information in spatial and frequency 
domains, respectively. For each metric, a higher score 
demonstrates a better fusion performance. 

B. Qualitative Assessments 

The qualitative results are displayed in Figure 5, consisting 
of five typical and intuitive fusion results on five different axial 
planes of brain PET (see the 1st row of Fig. 5) and MRI (the 2nd 
row of Fig. 5) images. Among these fused images, the fusion 
results of gradient transfer fusion (GTF) method [32] can retain 
much more functional information (shown in the 3rd row of Fig. 
5) of PET images than other fusion approaches, but GTF 
method loses much textural and structural information of MRI 
images (areas marked by red arrows). Although these fusion 
images generated by MSVD (the 4th row of Fig. 5) and TFNet 
(the 6th row of Fig. 5) can preserve the structural information 
from MRI images, these two fusion models also reduce the 
contrast in the MRI images. Furthermore, these results obtained  

  

Fig. 6. Objective assessment scores of four fusion metrics using five methods 

on twenty pairs of PET and MRI images. 

TABLE I.  MEAN VALUES OF ASSESSMENT RESULTS ON PET AND MRI 
IMAGE FUSION. BOLD BLACK INDICATES THE BEST. 

 EN Qabf FMI_pixel FMI_dct 

GTF 4.2897 0.5562 0.8453 0.3256 

MSVD 4.8821 0.4776 0.8578 0.2841 

IFCNN 4.8187 0.6663 0.8613 0.3746 

TFNet 5.4555 0.3457 0.8404 0.2353 

Ours 5.5289 0.7111 0.8770 0.3933 

created by IFCNN (the 5th row of Fig. 5) and our CSpA-DN 

model (the last row of Fig. 5) not only retain intensity values 

and significant structural information from MRI images, but 

also preserve rich functional information in PET images. In 

addition, the textural details of our CSpA-DN fusion results 

are more distinct than those of IFCNN, as illustrated in the 

highlighted regions (red boxes). 

C. Quantitative Evaluations 

The quantitative assessments of our fusion model and 
other four methods such as GTF [32], MSVD [8], IFCNN [15], 
TFNet [16]. These approaches include two traditional fusion 
algorithms and two deep learning-based fusion technologies. 
We also employ the objective metrics introduced in section A 
to evaluate our fused results, and different metrics are utilized 
for different evaluation emphases. 

The quantitative fused results of twenty pairs of test 
images are shown in Fig. 6, where five color curves in each 
subfigure represent results of five fusion methods. The 
assessment score of each method over twenty pairs of source 
images is provided. It is observed that our proposed fusion 
method outperforms other four algorithms on all test image 
pairs except for EN value of image pair No.2.  

Table I shows the mean evaluation scores of twenty tests 
for each metric by using five fusion methods. As can be 
observed from these results, our fusion method achieves the 
highest mean values on four metrics and indicates a better 
performance. The highest mean assessment scores also 
demonstrate that our fusion results preserve more information, 
structural details, stronger contrast, and a higher similarity 
with source images. 

D. Ablation study 

In this section, we carry out the ablation experiments to 
demonstrate the effectiveness of the self-attention mechanism 
in our proposed fusion model. In order to illustrate the effect, 
the following experiments are performed. The fusion 
framework that only contains the encoder and decoder is 
performed on the training and test data. The self-attention 
network consisting of spatial and channel attention modules is 
inserted into the fusion model to enhance the structural 
information of the fusion images. The experimental settings of 
two comparative experiments are the same and the results are 
shown in Fig. 7. The functional information of PET images is 
preserved in the fused results obtained in the absent and 
present of self-attention network (shown in the third and 
fourth rows of Fig. 7). Nevertheless, the fused images shown 
in the third row obtained in the absent of self-attention almost 
loss the structural information from MRI images. On the 
contrary, those fused results in the fourth row can effectively  
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Fig. 7. Results on whether the self-attention mechanism exists in our fusion 
model. From top to bottom: PET images, MRI images, and the fusion images 

obtained in the absent and present of self-attention, respectively. 

retain more structural information from MRI images. In 
consequence, this ablation experiment demonstrates that the 
self-attention mechanism can further merge the local features 
from the source images to the fused results. 

IV. CONCLUSION 

In this work, we propose a novel fusion framework, named 
CSpA-DN, based on a densely connected network with 
channel and spatial attention for PET and MR images. Our 
algorithm is an end-to-end model with the encoder-decoder 
architecture, in which the densely connected neural network is 
constructed to extract features from two source images and a 
decoder network is employed to generate the fused image. 
Moreover, a self-attention mechanism is introduced in the 
encoder and decoder to further integrate local features along 
with their global dependencies adaptively. The output features 
at each position of the encoder is generated by a weighted 
summation of those features at all positions employing a 
spatial attention module. At the same time, the interdependent 
relationship of all feature maps is integrated by a channel 
attention module. The summation of the outputs of these two 
modules is fed into the decoder and the fused image is 
generated. Experimental results on twenty pairs of test images 
demonstrate the better performance of our proposed CSpA-
DN fusion model compared with other four fusion approaches 
for PET and MR images, according to both qualitative 
assessments and quantitative evaluations by using four 
objective metrics. In addition, the ablation experiments 
illustrate that the self-attention mechanism in our fusion model 
can effectively preserve more structural information from the 
source images.  
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