2022年6月21日 10:34

- 1。大题,根据题型复习考点,需要重点关注掌握。
- 2。别光看着傻乐,拿出纸笔一起写,要是写的没我快就 得好好学了。
- 3。坚持这两个小时, 你一定会有收获的; 按照这三条去做,一定不会挂科的。

一、气概净与尺叶斯、

例 5 某电子设备制造厂所用的元件是由三家元件制造厂提供的. 根据以 往的记录有以下的数据:

元件制造厂	次品率	提供元件的份额
1	0.02	0.15
2	0.01	0.80
3	0.03	0.05

8. 岛为由冷诞仪

2由公式,得.

二. 常见函数分市和代质

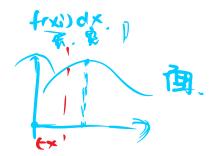
0<p<1 $P(X=k) = \binom{n}{k} p^{k} (1-p)^{s-k}$ $P(X=k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$ $\frac{r(1-p)}{p^2}$ $P(X=k) = (1-p)^{k-1}p$ $k=1,2,\cdots$ $\frac{\pi M}{N} \left(1 - \frac{M}{N}\right) \left(\frac{N - \pi}{N - 1}\right)$

+IX) FIX) EIX) DIX)

				续表
分布	多数	分布律或機率密度	数学期望	方差
正态分布	# #>0	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-x)^2/(2\phi^2)}$		*
下分布	e>0 E>0	$f(x) = \begin{cases} \frac{1}{F \Gamma(x)} x^{x-1} e^{-x/\theta}, x > 0 \\ 0, X & \end{pmatrix}$	aβ	eq ^e
遊數分布 负指數分布)	6>0	$f(x) = \begin{cases} \frac{1}{\theta} e^{-x\theta}, x > 0 \\ 0, X & & \end{cases}$,	*
χ' 分布	- i>1	$f(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} e^{-x/2} , x > 0 \\ 0, & \text{if } \theta. \end{cases}$		24

		k-r,r+1,	,	p.	
几何分布	0 <p<1< td=""><td>$P(X=k) = (1-p)^{k-1}p$ $k=1,2,\cdots$</td><td>1 p</td><td>$\frac{1-p}{p^2}$</td><td></td></p<1<>	$P(X=k) = (1-p)^{k-1}p$ $k=1,2,\cdots$	1 p	$\frac{1-p}{p^2}$	
超几何分布	N.M.n (M≤N) (n≤N)	$P(X=k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{k}}$ $k \cdot 5 \cdot 8 \cdot 8 \cdot \min(n \cdot M)$	nM N	$\frac{nM}{N}\Big(1-\frac{M}{N}\Big)\left(\frac{N-n}{N-1}\right)$	
拍松分布	A>0	$P(X=k) = \frac{\lambda^{2}e^{-k}}{k!}$ $k = 0, 1, 2, \cdots$	λ),	
均匀分布	a <b< td=""><td>$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \end{cases}$</td><td>4+5</td><td>$\frac{(b-a)^{\dagger}}{12}$</td><td></td></b<>	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \end{cases}$	4+5	$\frac{(b-a)^{\dagger}}{12}$	

排散分布 负指数分布)	<i>6></i> 0	$f(x) = \begin{cases} \frac{1}{\theta} e^{-x\theta}, x > 0 \\ 0, $,	*
大・分布	soi .	$f(x) = \begin{cases} \frac{1}{2^{n^2} \Gamma(n/2)} x^{n^2-1} e^{-x^2}, x > 0 \\ 0, $ 其他	п	2я
书布尔分布	φ>0 β>0	$f(x) = \begin{cases} \frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{p-1} e^{-\left(\frac{x}{\eta}\right)^{p}}, x > 0 \\ 0, & \text{fill} \end{cases}$	$q\Gamma\left(\frac{1}{\beta}+1\right)$	$q^i\left(\Gamma\left(\frac{2}{\beta}+1\right)-\left[\Gamma\left(\frac{1}{\beta}+1\right)\right]^i\right)$
環利分布	g>0	$f(x) = \begin{cases} \frac{x}{\sigma^T} e^{-\rho^2/(2\sigma^2)}, & x > 0 \\ 0, & 其像 \end{cases}$	$\sqrt{\frac{\pi}{2}}\sigma$	$\frac{4-\pi}{2}\sigma^2$


D 仁元· 常乡其他铭名、 X. T.

- 2.泊松, 时间内发生的次数 =) P(x=xi)
- 3. 指数: 事付的发生、
- 4.正态: 更以= 一方、标程化-
 - J. 白志: DIX)= 15-00)2

3.随机型名金数分产"Y=91%"

题型: fx1x), Y=9(x) fr(y)

方法:(公式.意报)

Tab (狗) = P (猫 5狗)

$$f_{Y}(y) = P(Y \leq Y)$$
 $P(X \leq z)$
= $P(9|x) \leq Y)$

例 5 设电压 $V = A \sin \Theta$, 其中 A 是一个已知的正常数, 相角 Θ 是一个随机

变量,且有 $\Theta \sim U\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$,试求电压 V 的概率密度.

A

统上,..

福月公司法: frig)=fx[hig)] hyj], achig)ch

4. 二维连续分子函数 & 数字符征

1. 500 F(x.y) +

FIX = (tixy) dxdy

[剂什么是=重积分? / 16: 一)积分区域 (水4)一部积金额 Pr (x+y²-a²) L: x+y=1

frxy)=成酱.

17.=饼.

g(xy)=甜酱

Dv = 3.

h (xy)=肉酱

I = D, +(xy) = 点(本

Iz: if giriyproy E.N.

I3: 以 hixy oxdy 报序.

沙福强。各区域形英 |帐顶由=省决定

In they day: 新元

Is 《 grxy)dxdy=沧英

Ib: L hixyxxxxy= 身.

3/竹公饼.

例 2 设二维随机变量(X,Y)具有概率密度

 $f(x,y) = \begin{cases} 2e^{-(2x+y)}, & x>0, y>0, \\ 0, & \sharp \text{th.} \end{cases}$

(1) 求分布函数 F(x,y);(2)求概率 $P(Y \leq X)$.

11) * a. ~ (2) Y = X

的 指数。

1 /0 ex = 1

$$V: JDDDDDDY)$$

$$COV = E(X) - E(X)E(Y)$$

$$E(Y)$$

$$D(X) = E(X) - E(X)$$

3. (初函数5种

FEB=FIRSB)=F(RHKS)

= b fix,y) dx dy = (dx (50) (50) oly.

以上, 為一; 以下,方…

13 指布形体。例2 x 52 N, 62

> / 本=が影が S= L = (R-X)

为来自义的一个将本

/总海, 新规

/梅本: 玉黑/花珠 ? \$P\$\$\$\$

查你这一段时间时来,知识水学

27 中心极限定理(证例):

... (e) TIN, DIX) x, xz.. xi iiol F(N, 6)

分区新分区1的第5页

K, X. X 2 F(MO) -.. & U.M. VIN

 $\frac{f}{f} \times i \approx \lambda (n | \nu, n | 6)$ $= \frac{1}{\sqrt{n6}} \times \frac{1}{\sqrt{$

37.统讨名的三大分节[基础]

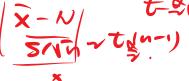
的理解: 子>0、物理意义:数值对小

3) 下分り to直 /×~×(n) => 下=×/n, 「 / ×~×(n2) => 下=×/n, 「 / ×~×(n2)

来源.强耐、相参淘松

4. 正态总体常用结论[重要] 整到沿船。

了应用),从区间估计划假设站拉。 (形等为70%, 整次30万月信息今处分 · 区间估计 2/6 显著代为1一以的区间?


京川/女: 小様子 (1-女:

$$\frac{1}{5} \frac{1}{5} \frac{1}$$

例1 有一大批糖果. 现从中随机地取 16 袋,称得重量(以 g 计)如下:

706 508 499 503 504 510 497 512

设袋装糖果的重量近似地服从正态分布,试求总体均值 μ 的置信水平为 0.95 的

(x-1)

がータナラはいか

也界尔时子为万名,查尔战绿能知道真假 1) Ho; N = 16 (365)

假设验证:

Ho: N\$ No

2)根据数据,选用义·t.f.=(-

· 点话过 / 天色. 楼形 天庙归 (3) 为这件前注) 和如 (3) 为这件前注) 和 (3) 对 (3) 和 (3) 和

日二十五十八十

 $E(\hat{\theta}) = B + \sum_{n=1}^{n} E(x)^n = m \theta. \theta.$